JS-VSG-10 Voltage Signal Generator

User Manual

1 Features:

1.1 Adjustable output of $0-10 \mathrm{~V}$, and the output range can be set arbitrarily within $0-10.0 \mathrm{~V}$;
1.2 -1999 to 9999, decimal point position can be set arbitrarily;
1.3 4-bit LCD (with backlight), digital encoder knob tuning (the number of turns can be set);
1.4 Manual tuning or programmable automatic output, can dynamically output continuous curve (set with encoder knob with key combination);
1.5 Can set fast switching coarse tuning and fine tuning mode, fixed startup value mode, fast return to zero and other modes;
1.6 The output can be calibrated and the error can be corrected linearly;
1.7 Output short circuit protection, power supply reverse connection protection, etc.;
1.8 Industrial grade circuit design, can work without power for a long time;

2 Technical Indicators:

2.1 Power supply DC $7-28 \mathrm{~V} / 1 \mathrm{~W}$ (note that power supply must be 2 V larger than output, such as $0-10 \mathrm{~V}$, power supply must be greater than 12 V);
2.2 Output range: $0-10 \mathrm{~V}$ Maximum current: 20 mA ; Tuning display accuracy: 0.01 V error $<0.03 \mathrm{~V}$
2.3 Encoder knob pulse number of 20, 0.4 inch digital tube;
2.4 Working environment:-20- $60^{\circ} \mathrm{C}$, relative humidity $<80 \%$;

3 Dimension Drawing:

Attention for the installation of cabinet/electric box:
The panel must be stuck to the ears on both sides to fix it, so the thickness of the panel must be greater than 1.4 mm , The opening size should consider the width of the ear, and should not be too small, otherwise it will not fit in. The recommended opening size is 77 X 40 mm

4 Wiring Diagram:

> G: Power ground
> V +: Power positive (12-28VDC recommended)
> OUT: Output positive
> G: Output ground
> Wherein the power supply ground and the output ground are connected internally Can only pick up one

5 Parameter Settings:

(Press the knob to confirm ("OK"), rotated clockwise is " + ", and counterclockwise is "-"):
5.1 Press the knob for 2 seconds to enter the parameter setting state, "F001", then press the knob to set the value, and press again to save after modification;
5.2 For the parameters after F002, you need to enter the password. After entering the setting display F001, display 4 horizontal bars clockwise, and then enter:
5.3 To enter F002 ...enter the password "+-+" first;
5.4 To enter F200 ...enter the password "-+-+" (automatic curve output setting);
5.5 Rotate the knob directly to the last parameter number, press the "OK", and enter the normal operation screen after setting;
5.6 After the parameter setting screen has no operation for more than 10 s , it exits the setting state and enter the normal operation screen;

6 Parameter Table and Description:

No.	Description	Remarks	Defau lt
F001	Coarse or fine tuning	$0:$ Coarse tuning mode, "F002" to modify the addition and subtraction multiples $1:$ Fine tuning mode, "F003" to modify addition and subtraction multiples $2:$ Automatic curve output (parameter F200 >0 should be set first) (for aging test products)	

F002	Coarse tuning of addition and subtraction multiples	1-100 (x 10)	1
F003	Fine tuning of addition and subtraction multiples	1-100	1
F004	Press function	0 : Manually store the output value (fixed startup value); 1. Quickly switch coarse tuning and fine tuning; 2: Output OFF/ON; 3. Quick return to zero (minimum value); (Function 1-3 is automatic storage of output value: 3 seconds after knob tuning)	0
F005	Output low end	0 at $0-10 \mathrm{~V} \quad 0-10.00$	0
F006	Output high end	10 V at $0-10 \mathrm{~V} \quad 0-10.00$	10.00
F007	Display low end	Ignore the decimal point from 1999 to 9999. Set in F009	0
F008	Display high end	Ignore the decimal point from 1999 to 9999. Set in F009	1000
F009	Decimal point position	0-4 0/1: None 2: 999.9 3:99.99 4: 9.999	3
F010-14	Standby	Standby	
F015	+10 V calibration value	-999--+999 for internal reference only, please be careful when modifying	
F200	Curve number	0 : Automatic curve output mode does not need; 1-9: number of sections	0
Ft01	Section 1 curve time	$0-999$ seconds Set as many values as there are sections of "F200"	
FA01	Section 1 starting voltage	0.00-10.00 V	
Fb01	Section 1 end voltage	0.00-10.00 V	
Ft02	Section 2 curve time	0-999 seconds	
...	\ldots	...	
Fb09	Section 9 end voltage	$0.00-10.00 \mathrm{~V}$	

6.1 Examples of setting and calculation of knob turns:

Press the knob for 2 seconds, enter the setting, display F001, and then press it to set its value to 0 (coarse tuning) or 1 (fine tuning), which can quickly switch the tuning speed, and the multiples of coarse tuning and fine tuning are set in F002 and F003;
Examples of number of turns calculated: Knob encoder 20 grids per turn

Setting example	F001	F002	F003	Description
$0-10 \mathrm{~V}$ shows 0-10.00, and the knob is	$\mathbf{0}$	$\mathbf{5}$	x	Set coarse tuning 5, with a grid

adjusted for 1 turn				change of 0.5 V
$0-10 \mathrm{~V}$ shows 0-10.00, and the knob is adjusted for 50 turns	$\mathbf{1}$	x	$\mathbf{1}$	Set fine tuning 1, with a grid change of 0.01 V
$0-5 \mathrm{~V}$ shows 0-5.00, and the knob is adjusted for 5 turns	$\mathbf{1}$	x	$\mathbf{5}$	Set fine tuning 5, with a grid change of 0.05 V

6.2 Save the power-on value when it is powered down. Press the knob to set other functions:

F004=0: After adjusting the knob, press the knob to save it, and save as much as you turn it on;
F004 $=1$: Press the knob to switch the manual tuning speed, which is equal to setting $\mathrm{F} 001=0$ or 1 ;
F004=2: Short press knob, switch output, OFF state output is 0 V ;
F004=3: Press the knob, and the screen display value is directly adjusted to 0 ;
6.3 Examples of output range and display scale settings:

Setting example	F005	F006	F007	F008	F009
0-10V shows 0-10.00	0	10.00	0	1000	3
0-10V shows 0-100.0	0	10.00	0	1000	2
0-10V shows 0-50.0	0	10.00	0	500	2
0-10V shows 0-5000 rpm	0	10.00	0	5000	0
0-5V shows 0-5.00	0	5.00	0	500	3
0-5V shows 0-100.0	0	5.00	0	1000	2
0-5V shows 0-50.0	0	5.00	0	500	2
0-3.3V shows 0-3.30	0	3.30	0	330	3
0-3.3V shows 0-100.0	0	3.30	0	1000	2
0-3.3V shows 0-50.0	0	3.30	0	500	2
5-10V shows 5.00-10.00	5.00	10.00	500	1000	3
1-5V shows-80 to 1000	1.00	5.00	-80	1000	0
1-3V shows 1.00-3.00	1.00	3.00	100	300	3

6.4 Output error calibration method:

When there is an error between the meter display value and the multimeter measurement value, you can calibrate 10 V and make the meter display consistent with the multimeter through linear correction;
Enter the parameter F015 setting, adjust its value, so that the multimeter measurement shows 10.00 V , press the knob to save, and the calibration is completed (the calibration value is an internal correction value regardless of the size);
6.5 Examples of automatic curve loop output setting steps: (For aging test products, enter the F200 password "-+-+")
Step 1. Set F200 = number of sections, with a maximum of 9 sections, and automatically change the cycle output for aging TEST products. . ;
Step 2, setting each section: $\mathrm{FtXX}=$ time $1-999 \mathrm{sec} / \mathrm{FAXX}=$ start voltage $/ \mathrm{FbXX}=$ end voltage;
3 , finally setting $F 001=2$, switching from manual tuning mode to automatic curve output mode;
Turn off automatic loop output mode: $\mathrm{F} 001=0$ or 1;

Example of waveform	Number of sections	Section 1	Section 2	Section 3	Section 4	\ldots	
Triangular wave	F200 =2	Ft01 $=10$ FA01 $=$ 2.00	Ft02=10 FA02=9. 00				

		$\begin{aligned} & \mathrm{Fb} 01=9 . \\ & 00 \end{aligned}$	$\begin{aligned} & \mathrm{Fb} 02=2 . \\ & 00 \end{aligned}$				
Square wave \square	$F 200=2$	$\begin{aligned} & \mathrm{Ft01}=10 \\ & \mathrm{FA} 01= \\ & 6.00 \\ & \mathrm{Fb} 01=6 \text {. } \\ & 00 \end{aligned}$	$\begin{aligned} & \mathrm{Ft} 02=10 \\ & \mathrm{FA} 02=3 . \\ & 00 \\ & \mathrm{Fb} 02=3 . \\ & 00 \end{aligned}$				
Sine wave \qquad	F200 $=6$	$\begin{aligned} & \mathrm{Ft01}=4 \\ & \mathrm{FA} 01= \\ & 3.00 \\ & \mathrm{Fb} 01=5 . \\ & 00 \end{aligned}$	$\begin{aligned} & \mathrm{Ft} 02=3 \\ & \mathrm{FA} 02=5 \\ & 00 \\ & \mathrm{Fb} 02=6 \text {. } \\ & 00 \end{aligned}$	$\begin{aligned} & \mathrm{Ft} 03=3 \\ & \mathrm{FA} 03=6 . \\ & 00 \\ & \mathrm{Fb} 03=5 . \\ & 00 \end{aligned}$	$\begin{aligned} & \mathrm{Ft01}=4 \\ & \mathrm{FA} 01= \\ & 5.00 \\ & \mathrm{Fb} 01=3 \text {. } \\ & 00 \end{aligned}$	$\begin{aligned} & \mathrm{Ft01}=3 \\ & \mathrm{FA} 01= \\ & 3.00 \\ & \mathrm{Fb} 01=2 \text {. } \\ & 00 \end{aligned}$	$\begin{aligned} & \mathrm{Ft01=3} \\ & \mathrm{FA} 01= \\ & 2.00 \\ & \mathrm{Fb} 01=3 \text {. } \\ & 00 \end{aligned}$

7 Attention

7.1 Turn off the power supply before wiring;
7.2 Exceeding the range shown in the technical index, it may cause the instrument to work abnormally or even be damaged;

